2021 in paleontology

From Wikiafripedia, the free encyclopedia that you can monetize your contributions or browse at zero-rating.
Jump to navigation Jump to search

Template:Year nav topic20 Template:Year in paleontology header Template:Science year nav

Flora[edit source | edit]

New taxa[edit source | edit]

Flowering plants[edit source | edit]

Ericales[edit source | edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Mecsekispermum[1]

Gen. et sp. nov

In press

Hably & Erdei

Miocene (Burdigalian)

Feked Formation

 Hungary

Possibly a member of the family Theaceae. Genus includes new species M. gordonioides.

Fabales[edit source | edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Leguminocarpum olmensis[2]

Sp. nov

Valid

Centeno-González et al.

Late Cretaceous (Campanian)

Olmos Formation

 Mexico

A member of the family Fabaceae.

Gentianales[edit source | edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Adina vastanenesis[3]

Sp. nov

In press

Shukla et al.

Early Eocene

Cambay Shale Formation

 India

A species of Adina.

Malvales[edit source | edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Craigia lincangensis[4]

Sp. nov

In press

Wang & Xie in Wang et al.

Late Miocene

 China

A species of Craigia

Tilia asiatica[5]

Sp. nov

In press

Jia & Nam in Jia et al.

Middle Miocene

Pohang Basin

 South Korea

A species of Tilia

Zingiberales[edit source | edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Orthogonospermum[6]

Gen. et sp. nov

In press

Smith et al.

Late Cretaceous (Maastrichtian)

Deccan Intertrappean Beds

 India

A member of the family Zingiberaceae. Genus includes new species O. patanense.

Research[edit source | edit]

  • A study on the fossil pollen record from New Zealand, dating from 100 million years ago to the present, is published by Prebble et al. (2021), who report evidence indicating that Cretaceous diversification was closely followed by an increase in flowering plants frequency, but their maximum frequency did not occur until the Eocene.[7]

Cnidarians[edit source | edit]

  • An exceptionally preserved conulariid specimen, keeping its aperture semi-closed and making it possible to see most of the internal part of the closure with rib continuation inwards, is described from the Ordovician of southeastern Brandenburg (Germany) by Sendino & Bochmann (2021).[8]

Arthropods[edit source | edit]

Arachnids[edit source | edit]

Name Novelty Status Authors Age Type locality Location Notes Images

Dolichocybe elongata[9]

Sp. nov

Valid

Khaustov et al.

Late Eocene

Rovno amber

 Ukraine

A mite belonging to the group Heterostigmata and the family Dolichocybidae.

Hoplocheylus similis[9]

Sp. nov

Valid

Khaustov et al.

Late Eocene

Rovno amber

 Ukraine

A mite belonging to the group Heterostigmata and the family Tarsocheylidae.

Paradactylidium sineunguis[9]

Sp. nov

Valid

Khaustov et al.

Late Eocene

Rovno amber

 Ukraine

A mite belonging to the group Heterostigmata and the family Acarophenacidae.

Priscaleclercera christae[10]

Sp. nov

In press

Magalhaes et al.

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A spider belonging to the family Psilodercidae.

Proadactylidium fossibilis[9]

Sp. nov

Valid

Khaustov et al.

Late Eocene

Rovno amber

 Ukraine

A mite belonging to the group Heterostigmata and the family Acarophenacidae.

Crustaceans[edit source | edit]

New taxa[edit source | edit]

Ostracods[edit source | edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Pleurocythere khapissovi[11]

Sp. nov

Valid

Glinskikh & Tesakova

Middle Jurassic (Callovian)

 Russia

Research[edit source | edit]

Insects[edit source | edit]

Trilobites[edit source | edit]

  • A study on the long-term evolutionary history of Devonian trilobites in North Africa is published by Bault et al. (2021).[13]

Brachiopods[edit source | edit]

Name Novelty Status Authors Age Type locality Location Notes Images

Carinagypa robecki[14]

Sp. nov

Valid

Blodgett et al.

Devonian (Emsian)

 United States
(Template:Country data Alaska)

A member of Pentamerida belonging to the family Gypidulidae.

Molluscs[edit source | edit]

Ammonites[edit source | edit]

New taxa[edit source | edit]

Name Novelty Status Authors Age Type locality Country Notes Images

Arcestes lawsi[15]

Sp. nov

Valid

Taylor, Guex & Lucas

Late Triassic (Rhaetian)

Gabbs Formation

 United States
(Template:Country data Nevada)

Arnioceras ritterbushi[16]

Sp. nov

Valid

Taylor & Guex

Early Jurassic (Sinemurian)

Sunrise Formation

 United States
(Template:Country data Nevada)

Arnioceras sparsum[16]

Sp. nov

Valid

Taylor & Guex

Early Jurassic (Sinemurian)

Sunrise Formation

 United States
(Template:Country data Nevada)

Boucaulticeras hawthornensis[16]

Sp. nov

Valid

Taylor & Guex

Early Jurassic (Sinemurian)

Sunrise Formation

 United States
(Template:Country data Nevada)

A member of the family Schlotheimiidae.

Discoscaphites mullinaxorum[17]

Sp. nov

Valid

Witts et al.

Late Cretaceous (Maastrichtian)

Corsicana Formation

 United States
(Template:Country data Texas)

Paracochloceras nunminensis[15]

Sp. nov

Valid

Taylor, Guex & Lucas

Late Triassic (Rhaetian)

Gabbs Formation

 United States
(Template:Country data Nevada)

Peripleurites gabbensis[15]

Sp. nov

Valid

Taylor, Guex & Lucas

Late Triassic (Rhaetian)

Gabbs Formation

 United States
(Template:Country data Nevada)

A member of Choristocerataceae belonging to the family Rhabdoceratidae.

Placites heggi[15]

Sp. nov

Valid

Taylor, Guex & Lucas

Late Triassic (Rhaetian)

Gabbs Formation

 United States
(Template:Country data Nevada)

A member of the family Gymnitidae.

Rhacophyllites mulleri[15]

Sp. nov

Valid

Taylor, Guex & Lucas

Late Triassic (Rhaetian)

Gabbs Formation

 United States
(Template:Country data Nevada)

Rhacophyllites volcanoensis[15]

Sp. nov

Valid

Taylor, Guex & Lucas

Late Triassic (Rhaetian)

Gabbs Formation

 United States
(Template:Country data Nevada)

Research[edit source | edit]

  • A modern review of the palaeobiology of heteromorph ammonoids is published by Hoffmann et al. (2021), including details of their anatomy, buoyancy, locomotion, predators, diet, palaeoecology, and extinction.[18]
  • Soft parts of a perisphinctid belonging to the genus Subplanites, separated from the conch either taphonomically or during a failed predation, are described from the Tithonian conservation deposits of Wintershof (southern Germany) by Klug et al. (2021).[19]

Other cephalopods[edit source | edit]

  • A study on chemistry, organization and genesis of circular structures (superficially resembling chromatophores) preserved in coleoid cephalopod specimens from the Jurassic of Germany and the Cretaceous of Lebanon is published by Klug et al. (2021).[20]

Gastropods[edit source | edit]

Name Novelty Status Authors Age Type locality Country Notes Images

Ampezzogyra angulata[21]

Sp. nov

Valid

Nützel & Hausmann in Hausmann et al.

Late Triassic (Carnian)

San Cassiano Formation

 Italy

A member of the family Stuoraxidae.

Anceps siminescui[22]

Nom. nov

Valid

Harzhauser

Middle-late Miocene

 Moldova

A Trochidae member;
a replacement name for Trochus semistriatus Siminescu & Barbu (1940).

Angulatella[21]

Gen. et sp. nov

Valid

Nützel & Hausmann in Hausmann et al.

Late Triassic (Carnian)

San Cassiano Formation

 Italy

A member of the family Prostyliferidae. The type species is A. bizzarinii.

Bandellina compacta[21]

Sp. nov

Valid

Nützel & Hausmann in Hausmann et al.

Late Triassic (Carnian)

San Cassiano Formation

 Italy

A member of the family Cornirostridae.

Camponaxis bandeli[23]

Sp. nov

Valid

Pieroni, Monari & Todd

Late Triassic (Carnian)

San Cassiano Formation

 Italy

A Tofanellidae member

Ederazyga[23]

Gen. et sp. et comb. nov

Valid

Pieroni, Monari & Todd

Late Triassic (Carnian to Rhaetian)

Nayband Formation
San Cassiano Formation
Zu Limestone

 Iran
 Italy
 Slovenia

A possible Zygopleuridae member.
The type species is E. fanchini;
genus also includes "Cerithium"? lateplicatum Klipstein (1843).

Gibbula lovellreevei[22]

Nom. nov

Valid

Harzhauser

Pliocene

 United Kingdom

A Trochidae member;
a replacement name for Trochus (Gibbula) reevei Harmer (1923).

Gibbula steiningeri[22]

Nom. nov

Valid

Harzhauser

Early Miocene

 Austria

A Trochidae member;
a replacement name for Trochus amedei bicincta Schaffer (1912).

Gibbula tavanii[22]

Nom. nov

Valid

Harzhauser

Miocene

 Libya

A Trochidae member;
a replacement name for Gibbula minima Tavani (1939).

Gibbuliculus[22]

Gen. et comb. et nom. nov

Valid

Harzhauser

Oligocene to Pleistocene

Template:Country data Europe

A Trochidae member;
The type species is "Gibbula" brebioni Landau, Van Dingenen & Ceulemans (2017).
Genus includes G. saccoi (a replacement name for Gibbula protumida Sacco, 1896).

Truncatella jiaozhouensis[24]

Sp. nov

In press

Yu et al.

Late Cretaceous

Jiaolai Basin

 China

A species of Truncatella.

Valvata jiaolaiensis[24]

Sp. nov

In press

Yu et al.

Late Cretaceous

Jiaolai Basin

 China

A species of Valvata.

Bivalves[edit source | edit]

Name Novelty Status Authors Age Type locality Country Notes Images

Freneixicardia picturata[25]

Sp. nov

Valid

Berezovsky

Eocene

 Ukraine

A cockle.

Loxocardium marmoreum[25]

Sp. nov

Valid

Berezovsky

Eocene

 Ukraine

A cockle.

Schedocardia imperfecta[25]

Sp. nov

Valid

Berezovsky

Eocene

 Ukraine

A cockle.

Echinoderms[edit source | edit]

Name Novelty Status Authors Age Type locality Country Notes Images

Cantabrigiaster[26]

Gen. et sp. nov

Hunter & Ortega-Hernández

Early Ordovician

Fezouata Formation

 Morocco

A somasteroid asterozoan. The type species is C. fezouataensis.

Trecrinus[27]

Gen. et sp. nov

Valid

Semenov et al.

Ordovician (Darriwilian)

 Russia

A hybocrinid crinoid. Genus includes new species T. schmidti.

Conodonts[edit source | edit]

Name Novelty Status Authors Age Type locality Country Notes Images

Ozarkodina huenickeni[28]

Sp. nov

In press

Gómez et al.

Silurian (Ludfordian) to Devonian (Lochkovian)

Los Espejos Formation

 Argentina

Fish[edit source | edit]

New taxa[edit source | edit]

Placoderms[edit source | edit]

Name Novelty Status Authors Age Type locality Country Notes Images

Leptodontichthys[29]

Gen. et sp. nov

Jobbins et al.

Devonian (Givetian)

Taboumakhlouf Formation

 Morocco

A member of Arthrodira belonging to the family Plourdosteidae. The type species is L. ziregensis.

Research[edit source | edit]

  • A study on the morphological and functional diversity of osteostracan and galeaspid headshields, and on its implications for the knowledge of the ecology of the immediate jawless relatives of jawed vertebrates, is published by Ferrón et al. (2021).[30]
  • New, exceptionally well‐preserved skeleton of Asteracanthus ornatissimus, preserved with teeth that markedly differ from other teeth referred to Asteracanthus, is described from the Tithonian Altmühltal Formation (Germany) by Stumpf et al. (2021), who interpret this specimen as indicating that Asteracanthus and Strophodus represent two valid genera distinct from all other hybodontiforms.[31]
  • A study on the biomechanics of teeth of five species of Otodus, aiming to assess the functional significance of morphological trends in otodontid teeth and to test whether the morphology of otodontid teeth enabled the transition from piscivory to predation on marine mammals and the evolution of titanic body sizes, is published by Ballell & Ferrón (2021)[32]
  • A study on growth patterns, reproductive biology and likely lifespan of Otodus megalodon is published by Shimada et al. (2021).[33]
  • A diverse assemblage of late Maastrichtian and Paleocene ray-finned fishes is described from Evrytania (Greece) by Argyriou & Davesne (2021).[34]

Reptiles[edit source | edit]

Synapsids[edit source | edit]

Non-mammalian synapsids[edit source | edit]

New taxa[edit source | edit]

Name Novelty Status Authors Age Type locality Country Notes Images

Acratophorus[35]

Gen. et comb. nov

Valid

Kammerer & Ordoñez

Middle Triassic (Anisian)?

Río Seco de la Quebrada

 Argentina

A kannemeyeriid dicynodont, the type species is "Kannemeyeria" argentinensis.

Acratophorus argentinensis.png

Kannemeyeria aganosteus[35]

Sp. nov

Valid

Kammerer & Ordoñez

Middle Triassic (Anisian)?

Quebrada de los Fósiles

 Argentina

A species of Kannemeyeria.

Mobaceras[36]

Gen. et sp. nov

Valid

Kammerer & Sidor

Middle Permian

Madumabisa Mudstone

 Zambia

A burnetiid therapsid. The type species is G. zambeziense.

Mammals[edit source | edit]

Other animals[edit source | edit]

New taxa[edit source | edit]

Name Novelty Status Authors Age Type locality Country Notes Images

Arienigraptus balticus[37]

Sp. nov

In press

Maletz & Ahlberg

Ordovician (Darriwilian)

 Sweden

A graptolite.

Arienigraptus delicatus[37]

Sp. nov

In press

Maletz & Ahlberg

Ordovician (Darriwilian)

 Sweden

A graptolite.

Arienigraptus robustus[37]

Sp. nov

In press

Maletz & Ahlberg

Ordovician (Dapingian)

 Sweden

A graptolite.

Buccaspinea[38]

Gen. et sp. nov

Valid

Pates et al.

Cambrian (Drumian)

Marjum Formation

 United States
(Template:Country data Utah)

A member of Radiodonta belonging to the family Hurdiidae. The type species is B. cooperi.

Research[edit source | edit]

  • Shore et al. (2021) report the first three-dimensional, pyritized preservation of soft tissue in Namacalathus hermanastes from the Nama Group (Namibia), and evaluate the implications of this finding for the knowledge of the phylogenetic relationships of this animal.[39]

Other organisms[edit source | edit]

  • Well-preserved communities of large unbranched filamentous microorganisms, bearing morphological and ecological similarities with large sulfide-oxidizing bacteria such as Beggiatoa, are described from the Ediacaran Itajaí Basin (Brazil) by Becker-Kerber et al. (2021).[40]

History of life in general[edit source | edit]

  • A study on the age of the most recent Pleistocene megafaunal specimens from Cloggs Cave (Australia), and on its implications for the knowledge of the timing and causes of Late Pleistocene extinctions of Australian megafauna, is published by David et al. (2021).[41]
  • A study aiming to determine how observed extinctions in the geological past can be predicted from the interaction of long-term temperature trends with short-term climate change is published by Mathes et al. (2021).[42]
  • A study on correlations between fossilization potential and food web features, aiming to determine how fossilization impacts inferences of ancient community structure, is published by Shaw et al. (2021).[43]

Other research[edit source | edit]

  • A study on the 3.4-billion-year old organic films from the Buck Reef Chert (Kaapvaal Craton, South Africa) is published by Alleon et al. (2021), who interpret their findings as indicating that early Archean organic films carry chemical information directly related to their original molecular compositions, and evaluate the implications of their finding for the knowledge of the initial chemical nature of organic microfossils found in ancient rocks.[44]
  • Evidence of prolonged and repeated oxygen stress in the Appalachian Basin associated with the Late Devonian extinctions is presented by Boyer et al. (2021).[45]
  • White & Campione (2021) describe a workflow in which three-dimensional surface profiles of fragmentary fossils can be quantitatively compared to better-known exemplars in order to identify fragmentary fossils, and apply this workflow to megaraptorid theropod unguals from the Cretaceous of Australia.[46]

Paleoclimate[edit source | edit]

  • Scotese et al. (2021) estimate how global temperatures have changed during the last 540 million years.[47]
  • A study aiming to reconstruct summer and winter temperatures in the Late Pleistocene when Neanderthals were using the site of La Ferrassie (France), based on data from oxygen isotope measurements of bovid tooth enamel, is published by Pederzani et al. (2021).[48]

References[edit source | edit]

  1. Erdei, B.; Hably, L. (2021). "Fossil Gordonia (s.l.)–like (Theaceae) winged seeds from the early Miocene of the Mecsek Mts, W Hungary". Palaeobiodiversity and Palaeoenvironments. in press. doi:10.1007/s12549-020-00461-0.
  2. Centeno-González, N. K.; Martínez-Cabrera, H. I.; Porras-Múzquiz, H.; Estrada-Ruiz, E. (2021). "Late Campanian fossil of a legume fruit supports Mexico as a center of Fabaceae radiation". Communications Biology. 4: Article number 41. doi:10.1038/s42003-020-01533-9. PMID 33446929.
  3. Shukla, A.; Mehrotra, R. C.; Verma, P.; Chandra, K.; Singh, A. (2021). ""Out-of-India" dispersal for Adina (tribe Naucleeae; family Rubiaceae): evidence from the early Eocene fossil record from India". Palaeoworld. in press. doi:10.1016/j.palwor.2021.01.001.
  4. Wang, B.; Zhang, S.; Zhang, P.; Yang, Y.; Chen, J.; Zhang, Y.; Xie, S. (2021). "A new occurrence of Craigia (Malvaceae) from the Miocene of Yunnan and its biogeographic significance". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2020.1867980.
  5. Jia, L.B.; Nam, G.S.; Su, T.; Stull, G.W.; Li, S.F.; Huang, Y.J.; Zhou, Z.K. (2021). "Fossil fruits of Firmiana and Tilia from the middle Miocene of South Korea and the efficacy of the Bering land bridge for the migration of mesothermal plants". Plant Diversity. in press. doi:10.1016/j.pld.2020.12.006.
  6. Smith, S. Y.; Kapgate, D. K.; Robinson, S.; Srivastava, R.; Benedict, J. C.; Manchester, S. R. (2021). "Fossil fruits and seeds of Zingiberales from the Late Cretaceous–early Cenozoic Deccan Intertrappean Beds of India". International Journal of Plant Sciences. in press. doi:10.1086/711474.
  7. Prebble, J. G.; Kennedy, E. M.; Reichgelt, T.; Clowes, C.; Womack, T.; Mildenhall, D. C.; Raine, J. I.; Crouch, E. M. (2021). "A 100 million year composite pollen record from New Zealand shows maximum angiosperm abundance delayed until Eocene". Palaeogeography, Palaeoclimatology, Palaeoecology. in press: Article 110207. doi:10.1016/j.palaeo.2020.110207.
  8. Sendino, C.; Bochmann, M. M. (2021). "An exceptionally preserved conulariid from Ordovician erratics of Northern European Lowlands". PalZ. in press. doi:10.1007/s12542-020-00534-7.
  9. 9.0 9.1 9.2 9.3 Khaustov, A. A.; Vorontsov, D. D.; Perkovsky, E. E.; Lindquist, E. E. (2021). "Review of fossil heterostigmatic mites (Acari: Heterostigmata) from late Eocene Rovno Amber. I. Families Tarsocheylidae, Dolichocybidae and Acarophenacidae". Systematic and Applied Acarology. 26 (1): 33–61. doi:10.11158/saa.26.1.3.
  10. Magalhaes, I. L. F.; Porta, A .O.; Wunderlich, J.; Proud, D. N.; Ramírez, M. J.; Pérez-González, A. (2021). "Taxonomic revision of fossil Psilodercidae and Ochyroceratidae spiders (Araneae: Synspermiata), with a new species of Priscaleclercera from mid-Cretaceous Burmese amber, northern Myanmar". Cretaceous Research. in press: Article 104751. doi:10.1016/j.cretres.2020.104751.
  11. Glinskikh, L. A.; Tesakova, E. M. (2021). "First data on the Callovian ostracodes of central Dagestan". Paleontological Journal. 55 (1).
  12. Matzke-Karasz, R.; Smith, R. J. (2021). "Temporal shifts in ostracode sexual dimorphism from the Late Cretaceous to the late Eocene of the U.S. Coastal Plain". Marine Micropaleontology. in press: Article 101959. doi:10.1016/j.marmicro.2020.101959.
  13. Bault, V.; Crônier, C.; Allaire, N.; Monnet, C. (2021). "Trilobite biodiversity trends in the Devonian of North Africa". Palaeogeography, Palaeoclimatology, Palaeoecology. 565: Article 110208. doi:10.1016/j.palaeo.2020.110208.
  14. Blodgett, R. B.; Santucci, V. L.; Baranov, V. V.; Hodges, M. S. (2021). "The gypidulid brachiopod genus Carinagypa in late Emsian (latest Early Devonian) strata of the Shellabarger Pass area (Farewell Terrane), Denali National Park & Preserve, south-central Alaska" (PDF). New Mexico Museum of Natural History and Science Bulletin. 82: 19–28.
  15. 15.0 15.1 15.2 15.3 15.4 15.5 Taylor, D.; Guex, J.; Lucas, S. G. (2021). "Ammonoids of the latest Triassic Gabbs Formation at New York Canyon, Mineral County, Nevada". New Mexico Museum of Natural History and Science Bulletin. 82: 393–425.
  16. 16.0 16.1 16.2 Taylor, D.; Guex, J. (2021). "Early Sinemurian ammonoids and biochronology of the Sunrise Formation, New York Canyon, Mineral County, Nevada". New Mexico Museum of Natural History and Science Bulletin. 82: 371–391.
  17. Witts, J. D.; Landman, N. H.; Garb, M. P.; Irizarry, K. M.; Larina, E.; Thibault, N.; Razmjooei, M. J.; Yancey, T. E.; Myers, C. E. (2021). "Cephalopods from the Cretaceous-Paleogene (K-Pg) boundary interval on the Brazos River, Texas, and extinction of the ammonites". American Museum Novitates. 3964: 1–52. doi:10.1206/3964.1. hdl:2246/7250.
  18. Hoffmann, R.; Slattery, J. S.; Kruta, I.; Linzmeier, B. J.; Lemanis, R. E.; Mironenko, A.; Goolaerts, S.; De Baets, K.; Peterman, D. J.; Klug, C. (2021). "Recent advances in heteromorph ammonoid palaeobiology". Biological Reviews. in press. doi:10.1111/brv.12669. PMID 33438316.
  19. Klug, C.; Schweigert, G.; Tischlinger, H.; Pochmann, H. (2021). "Failed prey or peculiar necrolysis? Isolated ammonite soft body from the Late Jurassic of Eichstätt (Germany) with complete digestive tract and male reproductive organs". Swiss Journal of Palaeontology. 140 (1): Article 3. doi:10.1186/s13358-020-00215-7.
  20. Klug, C.; Di Silvestro, G.; Hoffmann, R.; Schweigert, G.; Fuchs, D.; Clements, T.; Gueriau, P. (2021). "Taphonomic patterns mimic biologic structures: diagenetic Liesegang rings in Mesozoic coleoids and coprolites". PeerJ. 9: e10703. doi:10.7717/peerj.10703.
  21. 21.0 21.1 21.2 Hausmann, I. M.; Nützel, A.; Roden, V. J.; Reich, M. (2021). "Palaeoecology of tropical marine invertebrate assemblages from the Late Triassic of Misurina, Dolomites, Italy". Acta Palaeontologica Polonica. Online edition. doi:10.4202/app.00659.2019.
  22. 22.0 22.1 22.2 22.3 22.4 Harzhauser, M. (2021). "The Cainozoic to present-day record of Circum-Mediterranean, NE Atlantic and North Sea Cantharidinae and Trochinae (Trochoidea, Gastropoda)—a synopsis". Zootaxa. 4902 (1): 1–81. doi:10.11646/zootaxa.4902.1.1.
  23. 23.0 23.1 Pieroni, V.; Monari, S.; Todd, J. A. (2021). "A new caenogastropod from the upper Rhaetian of Lombardy: Palaeobiogeographical history and implications for the Early Jurassic gastropod recovery". Acta Palaeontologica Polonica. Online edition. doi:10.4202/app.00792.2020.
  24. 24.0 24.1 Yu, T.; Salvador, R. B.; Wang, H.; Fang, Y.; Neubauer, T. A.; Li, S.; Zhang, H.; Wan, X. (2021). "A latest Cretaceous gastropod fauna from the Jiaolai Basin of East Asia". Cretaceous Research. 121: Article 104736. doi:10.1016/j.cretres.2020.104736.
  25. 25.0 25.1 25.2 Berezovsky, A. A. (2021). "New species of Cardiidae (Bivalvia) from the Eocene of Ukraine". Paleontological Journal. 55 (1).
  26. Hunter, A. W.; Ortega-Hernández, J. (2021). "A new somasteroid from the Fezouata Lagerstätte in Morocco and the Early Ordovician origin of Asterozoa". Biology Letters. 17 (1): Article ID 20200809. doi:10.1098/rsbl.2020.0809. PMID 33465330.
  27. Semenov, N. K.; Terentyev, S. S.; Mirantsev, G. V.; Rozhnov, S. V. (2021). "A new hybocrinid genus (Echinodermata, Crinoidea) from the Middle Ordovician of Ladoga Glint on the Volkhov River". Paleontological Journal. 55 (1).
  28. Gómez, M. J.; Mestre, A.; Corradini, C.; Heredia, S. (2021). "A new species, Ozarkodina huenickeni, from the upper Silurian - Lower Devonian in San Juan Precordillera, South America". Journal of South American Earth Sciences. in press: Article 103174. doi:10.1016/j.jsames.2021.103174.
  29. Jobbins, M.; Rücklin, M.; Argyriou, T.; Klug, C. (2021). "A large Middle Devonian eubrachythoracid 'placoderm' (Arthrodira) jaw from northern Gondwana". Swiss Journal of Palaeontology. 140 (1): Article 2. doi:10.1186/s13358-020-00212-w.
  30. Ferrón, H. G.; Martínez-Pérez, C.; Rahman, I. A.; de Lucas, V. S.; Botella, H.; Donoghue, P. C. J. (2021). "Functional assessment of morphological homoplasy in stem-gnathostomes". Proceedings of the Royal Society B: Biological Sciences. 288 (1943): Article ID 20202719. doi:10.1098/rspb.2020.2719. PMID 33467997.
  31. Stumpf, S.; López‐Romero, F. A.; Kindlimann, R.; Lacombat, F.; Pohl, B; Kriwet, J. (2021). "A unique hybodontiform skeleton provides novel insights into Mesozoic chondrichthyan life". Papers in Palaeontology. in press. doi:10.1002/spp2.1350.
  32. Ballell, A.; Ferrón, H. G. (2021). "Biomechanical insights into the dentition of megatooth sharks (Lamniformes: Otodontidae)". Scientific Reports. 11: Article number 1232. doi:10.1038/s41598-020-80323-z. PMC 7806677. PMID 33441828.
  33. Shimada, K.; Bonnan, M. F.; Becker, M. A.; Griffiths, M. L. (2021). "Ontogenetic growth pattern of the extinct megatooth shark Otodus megalodon—implications for its reproductive biology, development, and life expectancy". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2020.1861608.
  34. Argyriou, T.; Davesne, D. (2021). "Offshore marine actinopterygian assemblages from the Maastrichtian–Paleogene of the Pindos Unit in Eurytania, Greece". PeerJ. 9: e10676. doi:10.7717/peerj.10676.
  35. 35.0 35.1 Kammerer, C. F.; Ordoñez, M. D. (2021). "Dicynodonts (Therapsida: Anomodontia) of South America". Journal of South American Earth Sciences. In press. doi:10.1016/j.jsames.2021.103171.
  36. Kammerer, C. F.; Sidor, C. A. (2021). "A new burnetiid from the middle Permian of Zambia and a reanalysis of burnetiamorph relationships". Papers in Palaeontology. In press. doi:10.1002/spp2.1341.
  37. 37.0 37.1 37.2 Maletz, J.; Ahlberg, P. (2021). "Dapingian to lower Darriwilian (Middle Ordovician) graptolite biostratigraphy and correlation of the Krapperup drill core, Scania, Sweden". GFF. in press. doi:10.1080/11035897.2020.1822439.
  38. Pates, S.; Lerosey-Aubril, R.; Daley, A. C.; Kier, C.; Bonino, E.; Ortega-Hernández, J. (2021). "The diverse radiodont fauna from the Marjum Formation of Utah, USA (Cambrian: Drumian)". PeerJ. 9: e10509. doi:10.7717/peerj.10509.
  39. Shore, A. J.; Wood, R. A.; Butler, I. B.; Zhuravlev, A. Yu.; McMahon, S.; Curtis, A.; Bowyer, F. T. (2021). "Ediacaran metazoan reveals lophotrochozoan affinity and deepens root of Cambrian Explosion". Science Advances. 7 (1): eabf2933. doi:10.1126/sciadv.abf2933.
  40. Becker-Kerber, B.; de Barros, G. E. B.; Paim, P. S. G.; Prado, G. M. E. M.; Rosa, A. L. Z.; El Albani, A.; Laflamme, M. (2021). "In situ filamentous communities from the Ediacaran (approx. 563 Ma) of Brazil". Proceedings of the Royal Society B: Biological Sciences. 288 (1942): Article ID 20202618. doi:10.1098/rspb.2020.2618. PMID 33402067.
  41. David, B.; Arnold, L. J.; Delannoy, J.-J.; Fresløv, J.; Urwin, C.; Petchey, P.; McDowell, M. C.; Mullett, R.; GunaiKurnai Land and Waters Aboriginal Corporation; Mialanes, J.; Wood, R.; Crouch, J.; Berthet, J.; Wong, V. N. L.; Green, H.; Hellstrom, J. (2021). "Late survival of megafauna refuted for Cloggs Cave, SE Australia: Implications for the Australian Late Pleistocene megafauna extinction debate". Quaternary Science Reviews. 253: Article 106781. doi:10.1016/j.quascirev.2020.106781.
  42. Mathes, G. H.; van Dijk, J.; Kiessling, W.; Steinbauer, M. J. (2021). "Extinction risk controlled by interaction of long-term and short-term climate change". Nature Ecology & Evolution. in press. doi:10.1038/s41559-020-01377-w. PMID 33462487.
  43. Shaw, J. O.; Coco, E.; Wootton, K.; Daems, D.; Gillreath-Brown, A.; Swain, A.; Dunne, J. A. (2021). "Disentangling ecological and taphonomic signals in ancient food webs". Paleobiology. in press. doi:10.1017/pab.2020.59.
  44. Alleon, J.; Bernard, S.; Olivier, N.; Thomazo, T.; Marin-Carbonne, J. (2021). "Inherited geochemical diversity of 3.4 Ga organic films from the Buck Reef Chert, South Africa". Communications Earth & Environment. 2: Article number 6. doi:10.1038/s43247-020-00066-7.
  45. Boyer, D. L.; Martinez, A. M.; Evans, S. D.; Cohen, P. A.; Haddad, E. E.; Pippenger, K. H.; Love, G. D.; Droser, M. L. (2021). "Living on the edge: The impact of protracted oxygen stress on life in the Late Devonian". Palaeogeography, Palaeoclimatology, Palaeoecology. in press: Article 110226. doi:10.1016/j.palaeo.2021.110226.
  46. White, M. A.; Campione, N. E. (2021). "A three-dimensional approach to visualize pairwise morphological variation and its application to fragmentary palaeontological specimens". PeerJ. 9: e10545. doi:10.7717/peerj.10545.
  47. Scotese, C. R.; Song, H.; Mills, B. J. W.; van der Meer, D. G. (2021). "Phanerozoic paleotemperatures: The Earth's changing climate during the last 540 million years". Earth-Science Reviews. in press: Article 103503. doi:10.1016/j.earscirev.2021.103503.
  48. Pederzani, S.; Aldeias, V.; Dibble, H. L.; Goldberg, P.; Hublin, J.-J.; Madelaine, S.; McPherron, S. P.; Sandgathe, D.; Steele, T. E.; Turq, A.; Britton, K. (2021). "Reconstructing Late Pleistocene paleoclimate at the scale of human behavior: an example from the Neandertal occupation of La Ferrassie (France)". Scientific Reports. 11: Article number 1419. doi:10.1038/s41598-020-80777-1. PMID 33446842.

Visibility[edit source | edit]

This page has been added to search engine indexes. learn more